

Quick Introduction to Menubars and Menus 1

Quick Introduction to Menubars and Menus

The classes defined in the Be Interface Kit for implementing menus and menubars are
powerful, but more flexible than are needed for most applications. This document is
aimed at getting you up and running quickly with menus and menubars, if what you
desire is a standard menubar across the top of a window, with normal menu items,
submenus, radio menu entries, and so forth.

The classes of interest when creating menu bars are

BMenuBar

,

BMenu

, and

BMenuItem

,
which respectively represent menubars, menus within menubars, and menu items
within menus. A fourth class,

BMenuField

, is used with popup menus, and is not
discussed here. Remember that all of these classes provide considerably more
functionality than is discussed here; refer to the Be reference documentation if you
need more power in your menus.

Note:

Some errors may have crept into some of the code shown here, when it was
being formatted for readability. However, the the full program (which is given
at the end of this document) contains all of the code shown, and has been ver-
ified to compile and work correctly, by transferring it back to the compiler after
formatting, and using it!

Creating a Menubar and Menus

Menubars are created with the

BMenuBar()

 constructor. They inherit from the

BView

class, and like all

BView

 objects, are inserted into a parent window using that
window's

AddChild()

 function. Menus are then created with the

BMenu()

 constructor,
and are added to a parent menubar using that menubar's

AddItem()

 function.

Let's look at this with a simple example. The following code will create a window
containing a menubar and two empty menus. Menu-specific code is shown in bold;
the remainder of the code has to do with defining the necessary application and
window objects to actually run the application.

#include <Application.h>
#include <InterfaceKit.h>

const char *APP_SIGNATURE= "application/x-vnd.Be-MyMenus";

class MyMenusWindow : public BWindow {
public:

MyMenusWindow::MyMenusWindow(BRect frame)
: BWindow(frame, "Hello World", B_TITLED_WINDOW, B_NOT_ZOOMABLE)

{

/* Make a menu bar and add it to the window. "mbarFrame"
 is passed into the BMenuBar constructor only to set the
 coordinates of the top left corner of the menubar in

2

Quick Introduction to Menubars and Menus 2

 the window; the bottom and right coordinates are, by
 default, ignored. */

BRect mbarFrame(0, 0, 0, 0);
BMenuBar *mbar = new BMenuBar(mbarFrame, "MyMenuBar");
AddChild(mbar);

/* Create and add two menus to the menubar */

BMenu *menu1, *menu2;
menu1 = new BMenu("Hello");
mbar->AddItem(menu1);
menu2 = new BMenu("Goodbye");
mbar->AddItem(menu2);

/* Show the window. */

Show();
}

/* QuitRequested causes clicks on the window's "close"
 button in the titlebar to quit the application. Without
 this, we'd have to kill the application manually. */

bool MyMenusWindow::QuitRequested() {
be_app->PostMessage(B_QUIT_REQUESTED);
return true;

}
};

class MyMenusApp : public BApplication {
public:

MyMenusApp::MyMenusApp() : BApplication(APP_SIGNATURE) {
BRect windowRect;
windowRect.Set(50,50,349,399);
new MyMenusWindow(windowRect);

}
private:

MyMenusWindow*theWindow;
};

/* The "main" function creates and runs the application.*/

void main(void) {
MyMenusApp *theApp;
theApp = new(MyMenusApp);
theApp->Run();
delete theApp;

}

The

BMenuBar()

 constructor is used with two arguments. The first is a

BRect

 which
defines the location of the top left corner of the menu bar within its parent window;
for standard menubars, this is (0, 0). Note that the bottom and left corners of the

BRect

 are ignored by the default form of

BMenuBar()

, which is used here. The second
argument to

BMenuBar()

 is a string to provide a name for the menu bar. Once
created, the menubar is added to an appropriate window using that window's

AddChild()

 function.

Quick Introduction to Menubars and Menus 3

Once a menubar has been created, new menus for it are created with the

BMenu()

constructor, and inserted into the menubar using the

BMenuBar::AddItem()

 method.
Menus inserted first will show up on the left side of the menubar, menus inserted last
will show up on the right side.

Creating Menu Items in a Menu

Let's put a couple of menu items into the previously created menus. This requires a
few more lines of code, inserted immediately after the menu-relevant (bolded) code
in the example above:

/* Create and add some items to the first menu */

BMenuItem *menu1item1 =

new

BMenuItem

("Bonjour", NULL);
menu1->

AddItem

(menu1item1);
menu1->

AddItem

(

new

BMenuItem

("G'day Mate", NULL));

/* Create and add some items to the second menu. */

menu2->

AddItem

(

new BMenuItem

("Au Revoir", NULL));
menu2->

AddItem

(

new BMenuItem

("Auf Wiedersehen", NULL));
menu2->

AddItem

(

new BMenuItem

("Sayonora", NULL));

New menu items are created via a call to the

BMenuItem()

 constructor, which in its
simplest form takes two arguments. The first argument to

BMenuItem()

 is the string
which is displayed onscreen for that item in the menu, and the second argument is a

BMessage

 which is sent to the application when the menu item is invoked by the
user

1

. We'll discuss how menus communicate with the application a bit later on, so
for now we'll use a null pointer as the second argument to

BMenuItem()

; this means
our menu items will do nothing when selected.

Once created, menu items are added to an appropriate menu using that menu's

AddItem()

 function. Items inserted first appear at the top of the menu, items inserted
last appear at the bottom. You might note that both the

BMenu

 and

BMenuBar

 classes
have an

AddItem()

 function; this isn't surprising, because

BMenuBar

 is actually a
subclass of

BMenu

. Loosely speaking, a

BMenuBar

 object is just a

BMenu

 object which is
always visible and which is displayed horizontally instead of vertically.

Shortcut Keys for Menu Items

A shortcut is a key combination, unique within the window, which can be used to
invoke a menu item without actually clicking on the menu and the menu item. A
common example is the

Alt-C

 key combination which, in most applications, is the
shortcut bound to the

Copy

 menu item in the

Edit

 menu. Shortcuts are associated with

1. Actually the

BMessage

 we pass in here is never sent to any other object. Instead, it serves as a

model
message

, and whenever the menu item needs to send a message, it copies the model message, adds some ad-
ditional information, and sends that modified copy. This permits the receiver of the message to safely delete
the message, without affecting the original in the

BMenuItem

.

4

Quick Introduction to Menubars and Menus 4

a menu item via optional third and fourth arguments to the

BMenuItem()

 constructor.
The third argument, if present, defines the key to press in conjunction with the

Alt

key, in order to invoke the shortcut; in the

Alt-C

 shortcut example, this argument
would be the character

’C’ . The fourth argument, if present, defines additional
modifier keys which must be pressed along with the Alt key, to invoke the argument;
these can be the Shift , Control , or Option keys. Note that the Alt key must always be
pressed to invoke a menu shortcut.

Let's add shortcuts to the two menu items we created above. Change the code for
them to the following:

/* Create and add some items to the first menu */
menu1->AddItem(new BMenuItem("Bonjour", NULL, 'B'));
menu1->AddItem(new BMenuItem("G'Day Mate", NULL, 'G',

B_SHIFT_KEY|B_CONTROL_KEY|B_OPTION_KEY));

When you compile and run the program, you'll now see that the Bonjour menu item
appears with the shortcut Alt-B beside it, and the G'Day Mate item appears with the
shortcut Shft-Ctl-Opt-Alt-G beside it. Pressing these two key combinations on the
keyboard will now invoke the corresponding menu items.

The fourth argument to BMenuItem() , when present, is a bit mask constructed by
ORing any or all of the constants B_SHIFT_KEY, B_CONTROL_KEY, and B_OPTION_KEY
together. All of them are used in the example above.

The case of the character passed in as the third argument to BMenuItem() is preserved
when displaying the shortcut in the menu (i.e. ’b’ is displayed lower-case, ’B’ is
displayed upper-case), but is irrelevant in terms of the operation of the shortcut; Alt-b
and Alt-B both mean the same thing. To avoid confusion on the part of your users, it
is recommended that you always use upper-case characters.

Submenus
A submenu is a menu that is accessed via a menu item in a "higher-level" menu. Just
as a menu item is added via a line of code something like this:

menu->AddItem(bMenuItemPtr);

 where bMenuItemPtr is a pointer to an object returned by the BMenuItem constructor,
so a submenu is added like this:

menu->AddItem(bMenuPtr);

where bMenuPtr is a pointer returned by the BMenu() constructor we've already used
in setting up our top-level menus.

To see this in action, add the following code immediately after the two
menu1–>AddItem(...) invocations in the current code:

Quick Introduction to Menubars and Menus 5

/* Create a submenu. */
BMenu *subMenu = new BMenu("A Submenu");
subMenu->AddItem(new BMenuItem("Subitem 1", NULL));
subMenu->AddItem(new BMenuItem("Subitem 2", NULL));

/* Add the submenu to the bottom of the first toplevel menu.*/
menu1->AddItem(subMenu);

Checked and Unchecked Menu Items
You may sometimes wish to mark a menu item as selected, by a check mark next to
it; for example, a menu item called Show Special Characters might be checked in a
word processor to indicate that the word processor should show special characters
(such as linefeeds) visually on the screen, and be unchecked if such characters
should not be shown. Typically the user is able to toggle such an option off or on by
selecting it. The Be menu classes allow you to mark or unmark a menu item, but do
not automatically handle toggling it–you'll have to do that manually in your
application, something we'll get to a bit later.

Marking an item is done with the BMenuItem::SetMarked() function, which takes a
single bool argument, and marks the item if the boolean value is true, and unmarks it
if the boolean value is false. To create a new, initially checked item in the first menu,
add the following code immediately after the code added in the section just above:

/* Create a new, checked item. */
BMenuItem *checkedItem = new BMenuItem("Toggle Me", NULL);
checkedItem->SetMarked(true);
menu1->AddItem(checkedItem);

If you run the application after compiling it with this addition, you'll find that the new
item does show up checked, but that selecting it does not make it unchecked; this
must be done with internal code, something we'll get to later.

Radio Menus
A radio menu is one in which only one item can be marked with a check mark;
selecting another item in that menu causes the previously marked item to be
unmarked, and places a check beside the newly marked item. The BMenu class has
built-in support for radio menus; by invoking the BMenu::SetRadioMode() function
on a menu, you can indicate that it should function as a radio menu, and BMenu will
take care of most of the details. To see this in action, let's add a radio submenu to our
first top-level menu, as follows (code should be inserted immediately after that given
just above):

/* Create a new radio submenu.*/
BMenu *radioMenu = new BMenu("Choose One");
/* We'll need to call SetMarked on the first radio item to mark it,
 so keep a ref to it in a variable. */

6 Quick Introduction to Menubars and Menus 6

BMenuItem *radioItem1 = new BMenuItem("Choice 1", NULL);
radioMenu->AddItem(radioItem1);
/* Mark the first radio item as checked--BMenu doesn't do this automatically.

*/
radioItem1->SetMarked(true);
radioMenu->AddItem(new BMenuItem("Choice 2", NULL));
radioMenu->AddItem(new BMenuItem("Choice 3", NULL));
radioMenu->SetRadioMode(true);
/* Add the radio menu as a submenu of menu1. */
menu1->AddItem(radioMenu);

If you now run the application, you will find a new submenu which behaves as a
radio menu should. It's the invocation of SetRadioMode() with a true argument
which caused the new menu to be treated as a radio menu; naturally, invoking
SetRadioMode() with a false argument would make the menu a normal, non-radio
menu. Note that putting a menu into radio mode does not automatically cause one of
its items to be checked; you must use BMenuItem::SetMarked() to specify the
initially marked item, as was done above. (It is possible to start with no items marked
in a radio menu, but this is not what is usually desired.)

Finding Out What is Marked

To use a radio menu in your application, you need some way of determining which
element of the radio menu a user has chosen. As is discussed later, each single menu
item in your menu hierarchy will send a BMessage to the containing window, when
that menu item is selected by the user, and the simplest strategy with radio menus is
to have each item in a radio menu send a uniquely identifiable BMessage. The
window receiving these messages can then determine which radio menu item has
been selected (and is therefore now marked), and take an appropriate action.

An alternative is to have each item in the radio menu send the same BMessage
(basically just telling the parent window, "Something in this radio menu has been
selected".) The window message-handling code can then extract the radio menu from
that BMessage, and use the BMenu::FindMarked() function to discover which item is
marked, something along these lines;

/* myRadioMenu is a BMenu configured as a radio menu. */
BMenuItem *markedItem;
markedItem = myRadioMenu-> FindMarked ();

If there is any marked item in myRadioMenu , markedItem will now contain a pointer to
that item’s associated BMenuItem object. If there is no marked item, markedItem will
contain NULL.

Quick Introduction to Menubars and Menus 7

Menu Separators
A menu separator is a horizontal line which separates one part of a menu from
another. Separators are used to visually divide a menu into related groups of items,
and have no function other than aesthetics. To add a separator to the end of an
existing menu, just invoke

menu-> AddSeparatorItem ();

and then continue using AddItem() with the menu to add items after the separator. I
don’t really need to show an example of this, do I?

Disabling and Enabling Menus and Menu Items
When you first create a menu (or a menu bar), the items in it are enabled, which
means they may be meaningfully selected by the user, and are displayed as black
text. You may disable menu items or entire menus (or enable previously disabled
items) using the BMenuItem::SetEnabled() or BMenu::SetEnabled() functions,
which are passed a single bool argument—true if you want the item enabled, or false
if you want it disabled. When a menu or a menu item is disabled, its text is "grayed
out", and selecting it will not cause any internal action to be performed (i.e. a
disabled menu item will never send a message to its associated window object.) If the
disabled item is a menu (i.e. a top-level menu in the menubar, or a submenu), then
any other items accessible through it are also disabled, and remain disabled until you
enable the parent menu again. However, the user can still "browse" these disabled
items, even though selecting them will not do anything

To see this in action, look for the line menu1->AddItem(subMenu); in the code above,
and immediately after that line, add the following:

/* Disable this subMenu (and everything in it). */
subMenu-> SetEnabled (false);

This code will cause the subMenu item of menu1 to become disabled. Since this item is
actually a submenu, all entries within that submenu will also be disabled. To re-
enable it, just execute subMenu->SetEnabled(true); . Use the same function to
disable/enable single (i.e. not a submenu) menu items. For example, to disable
Bonjour in the Hello menu, add the following line anywhere after menu1item1 is
initialized;

menu1item1->SetEnabled(false);

subMenu is a BMenu object, and menu1item1 is a BMenuItem object, but that's fine–both
of these classes implement a SetEnabled() function. Note that you can also you can
also use SetEnabled() to disable (or enable) an entire top-level menu, in which case
the name of that menu in the menubar will grayed out.

8 Quick Introduction to Menubars and Menus 8

Communicating Menu Item Selections to the Parent
Window

A menu is associated with a particular window (an instance of a subclass of BWindow,
the subclass being defined by you), and menu item invocations are communicated to
that window by sending it BMessage objects associated with particular menu items. So
far, we've used NULL in place of BMessage objects when calling the BMenuItem
constructor; now we'll see how to implement message functionality.

BMessages and the ’what’ Field

Each BMessage carries with it a what field, a 32-bit constant indicating what "kind" of
message this is. In the case of BMessage objects sent by menu items, this is often the
only data needed; you can simply have each menu item send a BMessage with its
own unique what value, and examine that value in your menu-handling code, to
determine what action to take. We'll define BMessage objects, and handling code, for
two of the menu items in the Hello menu; the Bonjour item and the Toggle Me item.
The first thing to do is to define the unique constants to be used in each menu item's
associated BMessage. Since a 32-bit value is just four ASCII characters, the easiest
thing may be to define these constants in terms of the first four characters in the
menu item name, assuming this results in unique values. The following lines can be
placed immediately after the #include directives in the code file:

const uint32 BONJOUR = 'Bonj';
const uint32 TOGGLE = 'Togg';

Of course, 'Bonj' and 'Togg' could be referred to directly when building the needed
BMessage objects, and not defined as constants, but defining them as constants in this
manner is both good programming style, and a worthwhile contribution towards
internal documentation of the code.

Note: Whenever using BMessage objects, it is vital to ensure that the what values
defined by yourself do not conflict with those defined internally within the Be
OS. This is easy to do; Be promises to use only uppercase characters and the
underbar character in such values. Since 'Bonj' and 'Togg' both include low-
ercase characters, they are safe from conflicting with internally defined what
values.

Handling BMessages with MessageReceived()

Now that we know how to identify the messages our menus might send, we can
write a MessageReceived() message-handling function in the MyMenusWindow class1.
It looks like this:

void MessageReceived(BMessage *message) {
switch(message->what) {

Quick Introduction to Menubars and Menus 9

case BONJOUR: {
BPoint pt = BPoint(20, 20);
DrawString("Hi to you too!", pt)
break;

}
case TOGGLE: {

/* We’ll put something in here later. */
break;

}
default : {

/* Other messages are passed to the inherited
MessageReceived function. */

BWindow::MessageReceived(message);
break;

}

In response to an invocation of the Bonjour menu item, we'll draw a string into the
window, near the upper left corner of the drawing area. We won't handle the Toggle
item quite yet–that's a bit in the future. Any other messages are passed on to the
MessageReceived() function of the parent BWindow class, in case that function
understands them.

The final piece of the puzzle is to associate an appropriate BMessage with the Bonjour
menu item. Go back to where the Bonjour BMenuItem is created, and for the line

BMenuItem *menu1item1 = new BMenuItem("Bonjour", NULL);

substitute the lines:

BMessage* bonjourMessage = new BMessage (BONJOUR);
BMenuItem *menu1item1 = new BMenuItem("Bonjour", bonjourMessage);

In other words, where previously we’d passed in NULL as (the pointer to) a BMessage,
now we are using bonjourMessage as the message, and that message includes the
BONJOUR constant in its what field, enabling the message receiver to identify the
source of the message as the Bonjour menu item.

Contents of BMessages from BMenuItems

Messages from menus contain more information than the what field. In addition to
any information you might store in the message when you create it, the BeOS
automatically inserts three other pieces of data into any message originating from a
BMenuItem ; ’when’, ’source ’, and ’index ’. ’when’ gives the time the menu item was
invoked by the user, in microseconds from the start of the year 1970. ’source ’

1. Whenever a message is sent by the Be OS to an object that can receive it, that object’s MessageRe-
ceived() member function is invoked to handle the incoming message. Here, we are overriding BWin-
dow::MessageReceived() with MyMenusWindow::MessageReceived() to handle our
menu item messages as we desire. Note in the code that messages not from our menu items are passed on to
BWindow::MessageReceived() by MyMenusWindow::MessageReceived() ! This en-
sures that messages other than those generated by our menu items are handled correctly.

10 Quick Introduction to Menubars and Menus 10

contains a pointer to the invoking BMenuItem, and ’index ’ gives the index of that
menu item within its parent menu, starting with 0 as the first item in the parent, etc.

Using this information, let’s fix the Toggle Me menu item so that selecting it actually
toggles its checkmark on and off. First, associate an appropriate message with the
toggle BMenuItem . In the code, look for the line

BMenuItem *checkedItem = new BMenuItem("Toggle Me", NULL);

and replace it with

BMessage *toggleMessage = new BMessage(TOGGLE);
BMenuItem *checkedItem = new BMenuItem("Toggle Me", toggleMessage);

as we did this for the Bonjour BMenuItem . (The TOGGLE constant was defined
previously, at the same time as the BONJOUR constant.)

Now, in the branch of the message-handling switch that takes care of the TOGGLE
case, i.e.

case TOGGLE: {
/* We’ll put something in here later. */
break;

}

add in code so it looks like this:

case TOGGLE: {
BMenuItem *toggleItem;
/* Extract the originating menu item from the message */
message-> FindPointer ("source" , (void **)&toggleItem);
/* If the item is currently marked with a check... */
if (toggleItem->IsMarked()) {

/* ...unmark it... */
toggleItem->SetMarked(0);

}
else {

/* ...otherwise it is not currently marked, so mark it. */
toggleItem->SetMarked(1);

}
break;

}

The key to being able to do this is the use of the BMessage::FindPointer() function
to extract a pointer to the invoking BMenuItem from the BMessage. The odd-looking
typecast (void **) on &toggleItem is correct–we need to pass in a pointer to a
pointer to a BMenuItem , so that FindPointer() can copy the BMenuItem pointer into
our variable correctly.

Error Handling when Building Menus
It’s rare for any of the menu construction functions to terminate with an error–they
consume few resources, and are typically executed during a program’s startup, when

Quick Introduction to Menubars and Menus 11

the program has most of its resources free. For this reason, most menu code is written
without worrying too much about error handling.

Probably the most important place to worry about error handling is when extracting
data from the BMessage objects sent by your menu items. Since C++’s strong type-
checking is defeated when sending data in BMessages, you might want to check to
make sure there is data associated with the names you look up in a BMessage.

Of the menu-specific function discussed above, only AddItem() is can return values
which indicate an error, and then only if a different form of AddItem() than that
discussed above is used.

Summary
Here’s the complete program that follows from the instructions given earlier in the
text. Bolded code corresponds roughly to menu-related features or usages that have
not been seen previously in the program. Copy this code into a single-file BeIDE
project, compile, and then start playing with it to see what you can do. Have fun!

#include <Application.h>
#include <InterfaceKit.h>

const uint32 BONJOUR = 'Bonj';
const uint32 TOGGLE = 'Togg';

const char *APP_SIGNATURE= "application/x-vnd.Be-MyMenus";

class MyMenusWindow : public BWindow {
public:

MyMenusWindow::MyMenusWindow(BRect frame)
: BWindow(frame, "Hello World", B_TITLED_WINDOW, B_NOT_ZOOMABLE)

{

/* Create a view for the interior region of the window
 (everything other than the menu bar) and add it to
 the window. */
interior = new BView(BRect(30, 30, 200, 200), "", B_FOLLOW_NONE,

B_WILL_DRAW);
AddChild(interior);

/* Make a menu bar and add it to the window. "mbarFrame"
 is passed into the BMenuBar constructor only to set the
 coordinates of the top left corner of the menubar in
 the window; the bottom and right coordinates are, by
 default, ignored. */
BRect mbarFrame(0, 0, 0, 0);
BMenuBar *mbar = new BMenuBar(mbarFrame, "MyMenuBar");
AddChild(mbar);

/* Create and add two menus to the menubar */
BMenu *menu1, *menu2;
menu1 = new BMenu("Hello");

12 Quick Introduction to Menubars and Menus 12

mbar->AddItem(menu1);
menu2 = new BMenu("Goodbye");
mbar->AddItem(menu2);

/* Create and add some items to the first menu */
BMessage* bonjourMessage = new BMessage (BONJOUR);
BMenuItem *menuitem1 = new BMenuItem("Bonjour", bonjourMessage);
menu1->AddItem(menuitem1);
menu1->AddItem(new BMenuItem("G'Day Mate", NULL, 'G',

B_SHIFT_KEY|B_CONTROL_KEY|B_OPTION_KEY));

/* Create a submenu. */
BMenu *subMenu = new BMenu("A Submenu");
subMenu->AddItem(new BMenuItem("Subitem 1", NULL));
subMenu->AddItem(new BMenuItem("Subitem 2", NULL));
/* Add the submenu to the bottom of the first toplevel menu.*/
menu1->AddItem(subMenu);
/* Disable this subMenu (and everything in it). */
subMenu-> SetEnabled (false);

/* Create a new, checked item. */
BMessage *toggleMessage = new BMessage(TOGGLE);
BMenuItem *checkedItem = new BMenuItem("Toggle Me",

toggleMessage);
checkedItem->SetMarked(true);
menu1->AddItem(checkedItem);

/* Create a new radio submenu.*/
BMenu *radioMenu = new BMenu("Choose One");
/* We'll need to call SetMarked on the first radio item to mark it,
 so keep a ref to it in a variable. */
BMenuItem *radioItem1 = new BMenuItem("Choice 1", NULL);
radioMenu->AddItem(radioItem1);
/* Mark the first radio item as checked--BMenu doesn't do this

automatically. */
radioItem1->SetMarked(true);
radioMenu->AddItem(new BMenuItem("Choice 2", NULL));
radioMenu->AddItem(new BMenuItem("Choice 3", NULL));
radioMenu->SetRadioMode(true);
/* Add the radio menu as a submenu of menu1. */
menu1->AddItem(radioMenu);

/* Create and add some items to the second menu. */
menu2-> AddItem (new BMenuItem ("Au Revoir", NULL));
menu2-> AddItem (new BMenuItem ("Auf Wiedersehen", NULL));
menu2-> AddItem (new BMenuItem ("Sayonora", NULL));

/* Show the window. */
Show();

}
/* QuitRequested causes clicks on the window's "close"
 button in the titlebar to quit the application. Without
 this, we'd have to kill the application manually. */
bool MyMenusWindow::QuitRequested() {

be_app->PostMessage(B_QUIT_REQUESTED);
return true;

}

Quick Introduction to Menubars and Menus 13

void MessageReceived(BMessage *message) {
switch(message->what) {

case BONJOUR: {
BPoint pt = BPoint(100, 100);
interior->DrawString("Hi to you too!", pt);
break;

}
case TOGGLE: {

BMenuItem *toggleItem;
/* Extract the originating menu item from the message */
message-> FindPointer ("source" , (void **)&toggleItem);
/* If the item is currently marked with a check... */
if (toggleItem->IsMarked()) {

/* ...unmark it... */
toggleItem->SetMarked(0);

}
else {

/* ...otherwise it is not currently marked, so mark it. */
toggleItem->SetMarked(1);

}
break;

}
default : {

/* Other messages are passed to the inherited
MessageReceived function. */

BWindow::MessageReceived(message);
break;

}
}

}
private:

BView *interior;
};

class MyMenusApp : public BApplication {
public:

MyMenusApp::MyMenusApp() : BApplication(APP_SIGNATURE) {
BRect windowRect;
windowRect.Set(50,50,349,399);
new MyMenusWindow(windowRect);

}
private:

MyMenusWindow*theWindow;
};

/* The "main" function creates and runs the application.*/
int main(void) {

MyMenusApp *theApp;
theApp = new(MyMenusApp);
theApp->Run();
delete theApp;

}

